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The wave-mechanical condition (Landahl 1972) for breakdown of an unsteady 
laminar flow into strong small-scale secondary instabilities is applied to some 
simple stratified inviscid shear flows. The cases considered have one or two 
discrete density interfaces and simple discontinuous or continuous velocity 
profiles. A primary wavelike disturbance to such a flow produces a perturbation 
velocity that is discontinuous at a density interface. The resulting instantaneous 
system, defined as the sum of the mean flow and the primary oscillation, develops 
a local secondary shear-flow instability that has a group velocity equal to the 
arithmetic mean of the instantaneous velocities on the two sides of the interface. 
According to the breakdown criterion, the disturbed flow will become critical 
whenever this velocity reaches a value equal to the phase velocity of the primary 
wave. The calculations show that for a single density interface breakdown may 
occur for low to moderate wave amplitudes in a fairly narrow range of Richardson 
numbers on the stable side of the stability boundary. On the other hand, in the 
unstable regime maximum wave slopes of order unity may be reached before 
breakdown occurs; this conclusion is in qualitative agreement with experiments. 
When the system includes two density interfaces, it  is found that there exists a 
range of high Richardson numbers far into the stable regime for which breakdown 
may take place even for very small and zero wave interface deflexions. 

- 

1. Introduction 
One of the central problems in the field of turbulence is to understand the 

mechanism whereby a laminar flow becomes turbulent. It has generally been 
accepted in the past that transition to turbulence has its origin in flow instabilities, 
hence the strong interest exhibited in the classical field of hydrodynamic stability 
theory during the last century. However, it  has long since become evident that 
classical stability theory for a parallel flow is not adequate for explaining the 
mechanism of transition. First, many laminar flows that are stable to small 
disturbances, such as pipe flows, do nevertheless become turbulent at high 
Reynolds numbers. Thus finite amplitude instability would have to be con- 
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sidered. Second, and more important, many shear flows, in particular wall- 
bounded flows, show a very rapid, almost explosive local growth of eddies of small 
scales during the final stage of transition. Such rapid growth has been observed 
in boundary-layer flows by, among others, Klebanoff, Tidstrom & Sargent (1962). 
Experiments on stratified shear flows by Thorpe (1968, 1969, 1971, 1973) also 
provide evidence of a rapid onset of small-scale turbulence during breakdown of 
an instability wave. 

The appearance of small-scale disturbances can result from a secondary 
instability of the perturbed flow field due to a large-scale primary wavelike 
disturbance. Considering both primary and secondary disturbances to be wave- 
like, Landahl (1972) used wave kinematics to show that a critical condition for 
a self-excited secondary wave train would arise whenever its group velocity 
became equal to the phase velocity of the primary wave. At this condition the 
secondary wave group would be focused and (for a neutrally stable primary wave) 
trapped at  a given local position on the primary wave where it could attain large 
amplitudes. Landahl’s (1972) calculations for the boundary-layer case, using 
measured instantaneous velocity profiles from the experiments by Klebanoff 
et al. (1962) to determine the growth-rate and dispersion characteristics of the 
secondary wave on the basis of the Orr-Sommerfeld problem, gave a position of 
the first appearance of breakdown and a frequency of secondary waves in good 
agreement with the experiments. The secondary instability arises because the 
primary instability wave induces an internal shear layer that produces inviscidly 
unstable inflexional velocity profiles near the crest of the primary wave. 

The possibility of focusing of short waves on long ones has also been noted in 
connexionwith studies of specific wave systems. Gargett & Hughes (1972) showed 
that short surface waves would interact strongly with long-crested internal 
waves of large wavelengths whenever the component of the surface-wave group 
velocity normal to the crest of the internal wave became equal to the phase 
velocity of the latter, in correspondence with Landahl’s (1972) breakdown 
criterion. Phillips (1973, 1976, chap. 3) has also demonstrated that the cg = co 
criterion can be derived on basis of resonant wave interaction for a resonant wave 
triad consisting of a long wave of wavenumber Ak and two short waves of wave- 
numbers k and k + Ak. The breakdown criterion is then recovered for the special 
case when the amplitude of the long wave tends to zero. This correspondence of 
resonant triad interaction with breakdown has also been pointed out by M. A. S. 
Ross (private communication). 

The present paper reports on an effort to apply Landahl’s breakdown condition 
to inviscid stratified shear flows. A general development of the governing 
equations, as well as a discussion of sohe of the immediate consequences that can 
be expected when the criterion is applied to stratified shear flows, has already 
been outlined by Criminale (1972). Unlike Landahl’s presentation, however, this 
formulation was viewed from the standpoint of a two-scale stability analysis and 
no quantitative results were presented. 

For small disturbances, Miles (1961) and Howard (1961) have shown that 
stratified shear flows are always stable if the local Richardson number is every- 
where greater than &. In  the atmosphere, though, observations of clear-air 
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turbulence have been reported for conditions in which the local (mean) 
Richardson number is greater than $ (see Mather 1969, for example). Such 
observations may be reconciled with localized parallel-flow stability theory if one 
takes account of the fact that a neutrally stable wave in a stratified shear flow 
may induce a local shear layer which can be intense even for small amplitudes if 
the density gradient is large, thus leading to secondary instability. Strong local 
density gradients are often observed in the thermocline of the ocean, where the 
density variation which depth often resembles a series of step functions. Indeed, 
Woods (1968) has observed localized patches of small-scale turbulence riding on 
internal waves in the Mediterranean Sea for a situation where the thermocline 
was found to be divided into relative thick layers of moderate temperature 
gradient separated by thin sheets of much higher temperature gradient. 

In  the present investigation the possibility of breakdown in Landahl’s (1972) 
sense is studied for some highly idealized stratified shear flows. Either one or two 
discrete density interfaces are considered and the velocity is assumed to be either 
constant in each layer or to vary linearly in the shear layer. Discrete-interface 
models are often adopted in stratified-flow research for the study of waves of 
wavelength large compared with the thickness of the density stratification layer. 
Using linearized theory Phillips (1976, equation 6.6.3) has shown that, for a 
long internal wave of the lowest mode, the Richardson number due to the flow 
induced by the wave will become locally less than $, thus indicating the possible 
onset of secondary instability, whenever the wave slope so = koSo exceeds the 

(1)  
limiting value 

where N, is the maximum value of the Brunt-VaisZila frequency 

(S0)lirn = 2w,/flm (< 1)’ 

in the layer and E,, 8, and oo are the wavenumber, amplitude and frequency of the 
primary wave respectively. He also finds that is always small compared 
with unity for wavelengths large compared with the thickness of the deneity layer. 
For the limiting case of vanishing thickness, corresponding to a discrete density 
interface, dpldy is infinite, and the secondary wave hence becomes unstable 
for any primary wave amplitude. The wavelength of the most rapidly growing 
secondary wave will generally be of the order of the thickness of the density 
layer. Thus the requirement for the validity of the basic theory that the second- 
ary wave causing breakdown must be of much smaller scale than the primary 
wave is satisfied whenever the density layer’s thickness is much smaller than the 
primary wavelength. For the discrete-interface ease the breakdown problem thus 
reduces to the kinematical one of determining whether the group velocity of the 
secondary wave can become equal to the primary wave’s phase velocity some- 
where along the wave. This problem is much simplified because the velocity field 
induced by the primary wave is discontinuous a t  the interface, and all unstable 
waves induced by the discontinuity will propagate with a velocity equal to the 
arithmetic mean of the velocities on the two sides of the interface. For layers of 
finite thickness with simple and symmetrical density and shear profiles, stability 
investigations show that the fastest growing mode also has a phase velocity equal 

31-2 



484 M .  T. Landahl and W .  0. Criminale 

to the mean of the velocities on the two sides of the layer, so that, again, the 
discrete-interface model provides a realistic approximation to the case of a 
density layer of small but finite thicknesss. Phillips (1976) used his analysis to 
explain how breakdown through aecondary instability could restrict the ampli- 
tude of internal waves and could provide a mechanism for smoothing out density 
gradients through turbulent mixing. The present analysis may be regarded as 
complementary to that of Phillips, stressing instead the additional kinematical 
condition required for the focusing and trapping of secondary waves leading to 
local concentration of secondary wave energy and hence to a strong breakdown 
mechanism. When a mean shear is present, Phillips’ analysis of the condition 
leading to secondary instability needs to be modified, but the main conclusion 
that the discrete-interface model gives the correct representation of the problem 
for finite thickness in the limit of infinite primary wavelength remains valid. Such 
simplifications, therefore, facilitate the analysis but are not limitations on the 
theory. 

In  the basic theory developed in the present paper, primary and secondary 
waves are allowed to be swept relative to the flow direction and hence processes 
dependent on three-dimensionality are incorporated. It is also assumed that the 
primary wave amplitude is small so that linearized theory can be used to deter- 
mine the phase velocity of the wave and the associated perturbation velocity 
field. This requirement was necessitated by the lack of measured (or in situ) 
instantaneous density and velocity profiles. In  principle, the breakdown criterion 
could be computed for finite amplitude primary waves if such experimental 
information were available, as was done by Landahl (1972). 

2. Basic theory 
Consider a wave propagating in an inviscid stratified shear flow.of steady 

velocity distribution U(y)i, which may or may not be continuous. The model 
considered is one in which the fluid has a density jump Ap, at one or more inter- 
faces located at y = yi. Let the phase velocity of the primary wave, first assumed 
to be real, be co = c, cos Ai + co sin Ak, where A is the sweep angle of the wave 
as shown in figure 1. The wave will induce a perturbation velocity field 

q, = uoi+voj+wok,  
which will generally be discontinuous at  the density interfaces. The induced 
velocity discontinuity will cause the development of a shear-layer instability 
wave with a phase and group velocity equal to the arithmetic mean of the 
velocities on the two sides of the interface, i.e. 

c = cg = i ( U +  + U-) i + &(qz + 9;) = U,i + qm, (2) 
where the superscripts + and - indicate values on the upper and lower sides of 
the interface respectively .That cg is independent of wavenumber for the unstable 
secondary wave leads to considerable simplifications in the present study. 

In  addition to requiring the secondary wave to be locally unstable, Landahl’s 
( 1972) breakdown criterion specifies the kinematic condition 

corn = Con, (3) 
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FIGURE 1. Relative orientation of axes illustrating definition of sweep angle A, phme 
velocity and perturbation velocity. 

where cs is the secondary group velocity and the subscript n refers to the com- 
ponents normal to the primary wave front. Projection onto the direction of the 
wave front gives 

G, = +( U+ + U-) cos A + 4(ain +a;,) = U, cos A + qm. (4) 

The perturbation field for the primary wave and its phase velocity normal to the 
wave front can be obtained most simply by a rotation of the co-ordinate system 
through the angle A, whence a two-dimensional problem is obtained for a velocity 
distribution U, = U cos A with an equivalent overall Richardson number 
given by - 

JO 
cos2A’ 

=- AP d 
Jon = g- p (AU)2cos2A 

where Ap and AU represent reference overall density and velocity differences, 
respectively, and d is the reference length. Hence the problem of finding the 
breakdown condition for a swept wave is reduced to an equivalent problem for 
an unswept one, so that only a two-dimensional problem need be considered. For 
the case of a neutrally stable primary wave, the solution of this problem is most 
easily approached in the following fashion. First, a solution for the primary 
perturbation field satisfying the kinematic boundary conditions at  the wavy 
interfaces for a given interface wavelength and phase velocity co is sought. For 
the simple flow models considered here this amounts to solving Laplace’s 
equation for the stream function. The phase velocity co is chosen, for a selected 
value of urn = qm, such that the breakdown condition (4) is satisfied. The require- 
ment that the pressure must be continuous across the interface gives the value of 
Jo required. Finally, the amplitude required to produce the breakdown at any 
particular location (phase) along the primary wave is computed from the kine- 
matic solution. If there is more than one interface in the problem the requirement 

’ 
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that the procedure shall produce the same overall Richardson number for all 
interfaces gives a compatibility condition between the interface amplitudes which 
yields the proper eigensolution for the perturbation velocity distribution. 

This procedure will generally show that for each wave amplitude the break- 
down condition will be satisfied at  two positions per primary wavelength, 
because u, attains the given value at two different instants per wave cycle, once 
during the ascending and once during the descending phase of the wave. However, 
only one of these points will lead to breakdown depending on whether cg - c, 
increases or decreases through the zero. If it increases with x (figure 2a) secondary 
waves to the left of the zero will travel in the -x direction, i.e. away from the 
focus. Waves to the right of the focus will travel to the right, i.e. also away from 
the position where cg = co. Hence there can be no accumulation of secondary 
wave energy at this position. The situation is analogous to that of acceleration of 
a compressible gas through the speed of sound. For the case where cg-co  de- 
creases through zero (analogous to deceleration through the speed of sound), 
however, the secondary disturbance energy will accumulate at the critical point 
co-co, leading to breakdown (figure 2 b ) .  Thus an auxiliary condition required 
€or breakdown is 

W O  - c0,/ax > 0 

or, if the primary wave is neutrally stable, simply 

au,/aX < 0. (6) 

With the aid of (6), one can thus determine whether the breakdown will occur 
on the forward or the backward face of the primary wave. 

Should the primary wave be growing or decaying, Landahl(l972) showed that 
an equivalent primary wave velocity c; is given by 

(7) 

where the subscripts t and x denote partial derivatives holding the secondary 
wavenumber constant. The condition for focusing, 

c; = - (c, )t/(cg )x 2 

cg = c;, (8) 

cg = C0r (9) 

is now different from that of trapping of the secondary wave, namely 

with co = cOr + icoi. By considering a temporally growing two-dimensional 
primary wave with u, = amcosS0, where 8, = ko(x-c,t)  is the phase measured 
with respect to the primary wave crest and where a, = zi,exp (kocoit), 22, being 
the initial velocity amplitude, one obtains from (7) and (2) 

C; = - (am)t/(~m~x = Cop + coi cot 8,. 

The breakdown condition (8) with co given by (4) leads to 

urn +a, cos eo = C, + cOi cot eo, (11)  

which generally will be satisfied at  two values of So. Either a(c;-c,)/ax < 0 or 
a(c; - co)/ax > 0, the latter being the critical condition. The minimum amplitude 
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FIGURE 3. Conceptua.1 figure illustrating direction of energy propagation relative to a focus. 
(a) Non-critical. (a) Critical. 

a, for breakdown is obtained when a(c, - cA)/ax = 0 at the position where (1  1 )  is 
satisfied, i.e. at  the phase given by 

sine, = (c,,/a,)+. (12) 

By inserting (12) into (1 1) and solving for a, we obtain 

as the minimum amplitude required for breakdown. It follows from this that 
trapping of the secondary wave, occurring when 

= cop- urn, (14) 

always requires a smaller amplitude than focusing and will first appear at  the 
phase position of maximum urn (usually at  the crest or trough), which will generally 
be different from that for focusing, except when c,,,.- Urn = 0,  in which case 
focusing and trapping both occur at  the phase of zero urn. 

To calculate the primary wave amplitude leading to focusing and hence 
breakdown for a temporally growing wave, one must first solve for c, = cw + ic,, 
for given k, and J,, then determine from (13) the induced velocity amplitude a, 
required for breakdown, and finally calculate from the kinematic relationship 
between the primary wave amplitude 8, and a, as a function of k, and c,  the 
amplitude 8, required. 

3. Flows with one density interface 
To illustrate the method we first consider one density interface with a velocity 

discontinuity, i.e. the simple Kelvin-Helmholtz problem. The problem is non- 
dimensionalized by setting the velocity equal to & 1 on each side of the interface. 
The density is p- = p + +Ap below and pf = p - $Ap above the interface, where 

In non-dimensional variables with g made dimensionless through division by 
the square of the reference velocity U = 1 and multiplication by the reference 
length d = 1, the quantity gAp/p is then equal to J,. (In this problem there is no 
natural reference length as is reflected by the fact that J, always appears in the 

Ap/p< 1.  
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combination Jo/ko, which is independent of the reference length is chosen as long 
as the same reference length is used for both ko and 4.) The stream function 
corresponding to an interface displacement of 

is given by 

where the upper sign refers to the region above the interface (y > 0) and the lower 
sign to the region below (y < 0). 

Without loss of generality we may in the following assume the primary wave- 
number k, to be positive. The induced velocity u$ is given by $$, and hence 

(17) from (16) 

80 that for breakdown at a given qo we should have, according to (4), 

y = '7, = 8, exp [ik0(x - cot)] (15) 

$& = - ~ o ( + ~ - ~ o ) e ~ p [ i ~ o ( z - c o t ~ ~ ( k , ~ y ~ ,  (16) 

u, = kO8,exp [ik,(x-c,t)l = koyO, 

co = kollo. 
Bernoulli's equation gives for the perturbation pressure 

p * / p  = -$$(+ 1-co) -gr]* ,  ( 1 9 )  

where q is the vertical displacement of the fluid particle. Hence, assuming 
Ap/p  1, we find that the continuity of pressure across the interfaces requires 

9APh = 4 = [&(1 +co) +$31 -Co~ l ,= , /~o  

= 2k0( 1 + kEqE). ( 2 0 )  

The primary wave will become unstable for J, < 2k,. According to (20 ) ,  a wave 
of small but finite amplitude will suffer breakdown just before the instability 
sets in. The intensity of the secondary instability generated depends on the 
induced velocity jump across the interface, which is given by 

( 2 1 )  

Au, = 2ki7 i .  ( 2 2 )  

Au, = u ~ - u Q  = 2 k , ~ , ~ , ,  

which at breakdown, following (is), is small, i.e. 

According to (6) and (17) this weak breakdown should appear on the part of the 
wave where aq/ax < 0, i.e. on the forward face of the wave (assuming the wave to 
travel to the right) with qo > 0. 

For the unstable regime J, < 2k, one has 

c,, = 0, C0( = (1 - J0/2k,)t .  ( 2 3 )  

From (13) and (16) it then follows that the minimum wave amplitude for break- 
down of an unstable Kelvin-Helmholtz wave is given by 

k,6, = 1( --J0/2k,)t ( 2 4 )  

with 8, = 8, exp (kocoit). The maximum primary wave slope k,8, attainable before 
breakdown sets in is thus unity for J ,  = 0. The linearized theory is, of course, 
only of qualitative value a t  best for such high wave amplitudes. 

A more realistic model for a free shear layer with a density interface is that 
investigated by Holmboe (1962) .  This model consists of a layer of constant shear 
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5 

FIGURE 3. Results of breakdown calculations for the Holmboe (1962) model of a stratified 
shear layer. Insert illustrates on which face of the primary wave breakdown will occur. 

of finite thickness with the density interface located in the middle, as illustrated 
in figure 3. The non-dimensional thickness is taken to be 2 with the velocity on 
each side of the layer _+ 1 (as in the Kelvin-Helmholtz model). The kinematical 
solution is given by 

(25)  $* = ( ~ ~ e x p [ ~ k o f ~ - c o ~ ) - ~ o l y l l  for lyl 3 1, 

~(A$e*kov+B:eFkov)exp[iko(z-cot)]  for - 1  < y < +1 ,  (26 )  

I with A$ = 2k,,B$ (1 T co) e*o, 

A$ = B$ [2k0( 1 T c,,) - 11 e2ko 
-236 = co@e-ab/(G T 2k0c0), and 

where 

From this solution one finds that at the interface y = 0 

G = 2k0 - 1 + e-2ko. 

where 
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Continuity of pressure a t  y = 0 requires 

By solving (29)  for E, and hence for c,, one finds that instability of a non-travelling 
(cop = 0)  wave mode, similar to the Kelvin-Helmholtz mode, is possible for 
exp ( -  2k0) - 2k0 + 1 > 0, or ko 2 0-639 whenever J, < Jol, where 

Jol = (2ko)-l [ G -  (2Ge-2ko)&]z. (30) 

A second travelling-wave unstable mode exists for J,, < J, < Joz, where 

Joz = (2ko)-1[G+ (2Ge--2ko)4]2, 

and can occur for all values of k,. 
On the basis of (28) and (29) the interface deflexion leading to breakdown was 

calculated for neutrally stable waves travelling to the right (c,  > 0 )  and with 
values of J, near the upper stability boundary (31). The results are shown in 
figure 3. As may be seen, fairly moderate deflexions are needed for low values of ko, 
and breakdown will first occur in the troughs and on the backward faces of the 
wave. For the wave travelling to the left (co < 0 )  breakdown will occur on the 
crests. 

Interface amplitudes required for breakdown in the unstable regime near the 
upper stability boundary have also been determined and are included in figure 3. 
As may be seen, the amplitudes rapidly become large inside the unstable regime 
as one departs from the immediate neighbourhood of the stability boundary. 
Inside the region of first-mode instability the breakdown amplitudes found are 
qualitatively those that are found for the Kelvin-Helmholtz problem. The 
maximum wave slope attainable before breakdown is found for the most unstable 
wave with J, = 0 and ko N 0.398 to be k06, N 0.615. 

Experiments on a shear flow with a rather sharp density interface have been 
carried out by Browand and coworkers (Browand & Wang 1972; Browand & 
Winant 1973; see Maxworthy & Browand 1975), who have observed breakdown 
both for mode 1 and mode 2 waves. Breakdown of the former was found to occur 
in much the same manner as that observed by Thorpe. For mode 2 waves break- 
down was observed to be confined to the high-speed side of the flow and would be 
consistent with the present model if the wave breaking were the one travelling 
upstream with respect to the mean velocity (co < 0 in the present model). For 
growing waves this is the one that may be expected to amplify in the shortest 
distance downstream since its group velocity, measured in the laboratory frame, 
would be the smallest. I n  the experiments the breaking mode 2 waves were 
formed by a collapse of a mode 1 wave producing two sets of waves (Browand, 
private communication), one travelling upstream and one downstream with 
respect to the mean speed, but no information is available as to which set 
ultimately broke. The experimental amplitudes at breakdown were moderately 
large, thus lending qualitative support to the breakdown theory. 

The effect of a bounding rigid surface may be studied by considering an 
example that represents an idealized model of a cold bottom current (see 
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FIGURE 4. Results of breakdown calculations for waves on a cold bottom current. Insert 
illustrates on which face of the primary wave breakdown will occur. 

figure 4). The depth d is set equal to unity in the non-dimensionalized problem. 
The solution for the stream function for given c, satisfying the kinematic 
boundary conditions at y = 0 and y = 1 is easily found to be 

and 
From this we find 

sinh (k, y ) 
sinh k, $- = - ( l - C o ) 8 ,  exp [ik,(x - cot)] 

and from the condition (4) for breakdown 

i.e. 

(33) 

(34) 

(35) 

The requirement that the pressure be continuous across the interface then gives, 
assuming (p+ - p-)/(p+ + p-) 

or after substitution of (31) and (32), 

1 as before, 

gAP/P = J, = - [co %G + $;(I- CO)ll/=JT, 

Jo = kO[ci + (1 - c,)' coth k,]. (36) 
By introducing (35) into (34) one finds 

k, 7, 1 +Goth k, urn = -- 
2 [2 + k, T O (  1 - ~ 0 t h  ko)]' (37) 

which shows that urn and 7, have opposite signs. Hence breakdown wilI occur on 
portions of the wave for which aTo/ax > 0,  i.e. on the backward face. 
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Sample results given by (35) and (36) are shown in figure 4. Also indicated is the 
region of instability for the primary wave. It may be seen that there exists a 
region of neutrally stable primary waves for which breakdown can already occur 
a t  small interface deflexions. For low primary wavenumbers this region extends 
only to moderately high Richardson numbers. In  the unstable regime focusing 
will require high amplitudes at  low wavenumbers (k, < 0.8) as seen in figure 4, 
in which some amplitudes for breakdown have been calculated from (13) and 
(34). In  the range of higher wavenumbers the amplitudes become smaller, and 
in the neighbourhood of the stability boundary, breakdown may occw at fairly 
low amplitudes. Trapping in this case takes place at  a different position on the 
wave from focusing, except in the limit k, -+ 00, for which cOr + Urn. 

4. Flow with two interfaces 
As a simple example of a stratified shear flow with two density interfaces and 

with a continuous shear-flow profile we consider the example shown in figure 5. 
This is a model that has been investigated for instability by Taylor (1932) and 
Goldstein (1932). As in the Holmboe model the velocity is assumed to vary 
linearly between U = - 1 at the lower interface, located at y = - 1, and U = + 1 
at the upper, located at  y = 1. The density of the middle layer is assumed to lie 
halfway between those of the upper and lower layers and the total density 
difference is taken to be 2Ap. As before it is assumed that Ap/p< 1. 

Let the upper, middle and lower layers be denoted by superscripts + , m and - 
respectively. Also, let the locations of the perturbed upper and lower interfaces 
given by 

respectively. The linearized solutions for the stream function due to the interface 
perturbations satisfying the kinematical boundary conditions at y = & 1 are, 
in the different regions, 

y+ = 1 +8$exp [ik,(z-c,t)l, y- = 1 +$;exp [ik,(z-c,t)l, (38) 

$+ = - ( 1 -  c,) 8: exp - k,(y - 1) + ik,(z - cot)], (39) 

$-" = [ A  e-koy + B ekov] exp [ik,(x- cot)], (40) 

$- = ( ~ + c , ) ~ ~ e x p [ ~ , ( ~ + y ) + i k , ( ~ - c , t ) ~ ,  (41) 

(42) 
where (1 - c,) 8: e-ko + (1  +co) 8; eko 

e2ko - e-zko 
A =  

and 

The pressure in an inviscid parallel shear flow U ( y )  perturbed by a wavelike 
disturbance is given by 

1, = -P(U-c,)Ilr,+PllrU-PgY/. (44) 

Combination of (39)-(44) shows that continuity of pressure a t  the upper interface 
requires 

8- (1-ct) 
Jo = ko( 1 - GO)' + (1 - cO) [ko( 1 - c0) cash (2kJ - 11 + 0 8; sinh ( 2k0) ko, (45) 
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FIGURE 5 .  Results of breakdown calculations for waves on a two-layer shear flow. Inserts 
illustrate location of breakdown on primary wave for varicose and sinuous modes. 

whereas continuity of pressure at  the lower interface gives 

(46) 
8; (1-ct) 
z s i n h  (2k0) Ice' Jo = ko( 1 + ~ 0 ) '  + (1 + c0) [ko( 1 + c0) cash 2k, - 11 + 

Compatibility of the two values gives the following requirement for the ratio 
of the amplitudes: 

(47) 
8; 8; 
$0 8; 

p ,  ---= 

where 2c0 sinh 2k0 
P =  [ 2 k o ~ ~ ~ h 2 k o + 2 k o -  11. 

kO@t - 1) 

Thus szp,  = &P & (p+ 1)k (49) 

The two signs in (49) represent two different modes: a varicose one with 8$/8, c 0, 
i.e. with the two interfaces deflected in opposite directions, and a sinuous one 
having 8;/8; > 0, i.e. both interfaces deflected in the same direction. For break- 
down a t  the upper interface we require 

co = 1+uk, (50) 
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FIGURE 6. Deflexion of upper interface at breakdown in the two-layer model for a (non- 
dimensional) deflexion of the lower interface of IT; I = 0.5. 

hence co - 1 < 1, and it follows from a comparison of (45) and (46) that a:/& must 
approach zero in the limit u& -+ 0. Therefore, when breakdown occurs at  the 
upper interface this is only slightly deflected (except in the very low wavenumber 
regime) in comparison with the lower one. 

From the kinematic solution we obtain 

in which the first term may thus be neglected at breakdown compared with the 
second. Further, to first order in u t  we may replace co by unity, so that 

uk 21 - koq;/sinh (Zk,), (52)  

which may be used to estimate co from (42). This value is then inserted into (45) 
(in which the last term may be neglected), giving the Richardson number leading 
to breakdown. Results of such calculations for 7; = - 0-5,O and + 0.5 are shown 
in figure 5.t From (47) and (48), we find that 

8:7: - kOUL 
E--= - P-l= - 

0 70 sinh (2kJ [Zko cosh (2k0)  + 2ko - 13' 

which in combination with (46) gives 

+ %,)2 1 
" 21 sinh (2ko) [21co cosh (2k0) + 2ko - l]' 

(53) 

(54) 

In interpreting the results for - 7o = 0, it should be remembered that !q0 denotes the 
interface deflexion and not the wave amplitude, which must be greater than the value of lo 
a t  breakdown in order for accumulation of secondary wave energy to take place. 
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showing that for a neutrally stable wave breakdown always occurs on the crest 
portion of the wave on the upper interface. From (52 )  it follows that auA/ax has 
the opposite sign to ar i /ax .  Thus, according to (6) breakdown takes place on that 
phase of the wave for which 70 increases with x. Figure 6 shows the deflexion of 
the upper interface at breakdown for 1 ~ 0 1  = 0.5, calculated from (52). As may be 
seen, the upper interface is only very slightly deflected under conditions for 
breakdown. 

No calculations have been carried out for the unstable regimes for this model. 

5. Conclusions 
The simple models of stratified shear flow having discrete density interfaces 

examined with the aid of linearized theory indicate that wave breakdown due to 
focusing and trapping of secondary instabilities may occur for certain ranges of 
Richardson numbers inside the stable regime. For the simple Kelvin-Helmholtz 
model this range has a width given by AJo/2ko = kgrj$, showing that waves near 
the stability boundary would break at small wave amplitudes. For a temporally 
growing Kelvin-Helmholtz wave breakdown occurs first at  the point of zero 
interface deflexion and for a maximum wave slope of k06, = (1 - J,/Zk,)*. 

The more refined Holmboe model, having a shear layer of finite width, was 
found to be susceptible to breakdown at moderately low Richardson numbers 
near the upper stability boundary for the second (travelling) mode. Waves well 
inside the instability region can reach fairly high amplitudes before breakdown, 
the situation inside the instability region of the first (non-travelling) mode being 
qualitatively similar to the Kelvin-Helmholtz case. 

The idealized model for a cold bottom current also showed arange of Richardson 
numbers in the stable regime for which breakdown is possible at  fairly low wave 
amplitudes. Inside the unstable regime breakdown due to focusing may occur at  
moderately large amplitudes for high wavenumbers. 

In  the case of a simple shear flow having two density interfaces (the Taylor- 
Goldstein model) the calculations showed that breakdown is possible at zero 
interface deflexion for high Richardson numbers far inside the stable regime. 
Both sinuous and varicose modes can suffer breakdown; the interface on which 
the breakdown occurs is found to have a very small deflexion compared with the 
other one, except at  low wavenumbers. 

At present there are not sufficiently detailed experimentaI results availabIe 
for a quantitative comparison with the theory. Woods’ (1968) field observations 
in the Mediterranean pertained mainly to what in the present theory would be the 
secondary instability wave. His estimates of the mean and wave-induced local 
shear indicated that the local Richardson number was below 0.25 as required by 
the parallel-flow theory for instability. However, the propagation characteristics 
of the large-scale (primary) wave inducing the local instability were not deter- 
mined, so that his data cannot be used for a test of the kinematical breakdown 
condition. Thorpe’s (1968, 1969, 1971, 1973) experiments on temporally growing 
waves gave wave slopes for the first appearance of breakdown of 1.2-1.4 at the 
lowest Richardson numbers, with decreasing values, approaching zero at the 
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stability boundary, for increasing Richardson numbers. This is in qualitative 
agreement with the present theory; see (24). The visual observations of miscible 
fluids indicated, however, that wave breakdown was preceded by local over- 
turning, so that gravitational collapse would certainly be involved in the 
mechanism. On the other hand, his (1969) experiments with immiscible fluids, 
which would be more relevant for a comparison with the theory, show that small- 
scale irregularities first appear before overturning takes place. The value of 1-2 
reported by Thorpe (1969) as the wave slope for the first appearance of these 
irregularities is in reasonable qualitative agreement with the present simplified 
theory. 

The experiments by Browand & Winant (1 973) are of particular interest for the 
present theory in that they show the appearance of a ‘one-sided’ breakdown 
confined to the high-speed side of the wave. The theory indeed shows such a one- 
sidedness. This should become progressively more marked &s the Richardson 
number increases from inside the region of the first-mode instability, in which 
the breakdown is symmetrical, to  the stability boundary of the second mode, at 
which the breakdown will first occur at a crest or trough depending on the 
direction of travel of the wave relative to the mean flow. 

The theory presented may have relevance to the mechanism of localized 
turbulence production in a stratified ocean and to the phenomenon of clear-air 
turbulence. I n  particular, breakdown could be expected to limit the wave 
amplitudes attainable in a stratified medium, so that turbulence spectra for the 
atmosphere and the ocean could be expected to be depleted in wavenumber 
regimes for which breakdown starts at low amplitudes. Observations to check 
such aspects of the theory are not available at  present, and it would be necessary 
to await more experimental data as well as theoretical calculations for more 
realistic stratified shear flows. 
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